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Variational Data Assimilation of Microwave
Radiobrightness Observations for Land Surface

Hydrology Applications
Rolf H. Reichle, Dennis B. McLaughlin, and Dara Entekhabi

Abstract—Our ability to accurately describe large-scale varia-
tions in soil moisture is severely restricted by process uncertainty
and the limited availability of appropriate soil moisture data.
Remotely sensed microwave radiobrightness observations can
cover large scales but have limited resolution and are only indi-
rectly related to the hydrologic variables of interest. We describe
a four-dimensional (4-D) variational assimilation algorithm that
makes best use of available information while accounting for both
measurement and model uncertainty. The representer method
used here is more efficient than a Kalman filter because it avoids
explicit propagation of state error covariances. In a synthetic
example, which is based on a field experiment, we demonstrate
estimation performance by examining data residuals. Such tests
provide a convenient way to check the statistical assumptions of
the approach and to assess its operational feasibility. Internally
computed covariances show that the estimation error decreases
with increasing soil moisture. An adjoint analysis reveals that
trends in model errors in the soil moisture equation can be
estimated from daily L-band brightness measurements, whereas
model errors in the soil and canopy temperature equations cannot
be adequately retrieved from daily data alone. Nonetheless, state
estimates obtained from the assimilation algorithm improve sig-
nificantly on prior model predictions derived without assimilation
of radiobrightness data.

Index Terms—Data assimilation, land surface hydrology, repre-
senter method, soil moisture.

I. INTRODUCTION

SOIL moisture at the land surface is a key variable for
weather and climate prediction, flood forecasting, and

the determination of groundwater recharge. Exfiltration and
infiltration fronts are partially controlled by the state of the
soil moisture profile. In addition, diurnal variations in land
surface fluxes and states are affected by conditions below
the surface. Although soil moisture is of great importance, it
is difficult to monitor routinely, especially over regional or
continental scales.In situ point observations are problematic
for characterizing large-scale variations, and remotely sensed
passive microwave measurements can only be indirectly related
to moisture in the 5 cm layer nearest to the surface.
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In this paper, we describe a method for deriving dynami-
cally consistent estimates of the soil moisture profile by as-
similating remotely sensed passive microwave measurements
into a land surface model. The primary model states are soil
moisture and soil temperature and the measured variable is the
L-band (1.4 GHz) brightness temperature. The state and mea-
surement equations include additive errors, which are assumed
to be random variables with specified statistical properties. The
estimation process can be reduced to the solution of a con-
strained least-squares problem, which is difficult to solve be-
cause the number of unknowns can be very large and the con-
straining model is nonlinear.

Most soil moisture assimilation studies have focused on es-
timation problems with only one spatial (vertical) dimension,
e.g., [1]–[5]. Since in one dimension, the state vector is small,
these studies can apply advanced sequential or variational as-
similation techniques that account for model errors and error co-
variance propagation. Unfortunately, such advanced methods do
not scale well with the size of the problem. Recently, Houseret
al. [6] investigated four-dimensional (4-D) soil moisture assim-
ilation usingin situ and remote sensing observations, but their
assimilation methods neglect model errors and error covariance
propagation. For a detailed review of soil moisture assimilation,
see [7]. Our goal in this paper is to develop a 4-D land data as-
similation algorithm that accounts for model errors and fully
incorporates process dynamics into the estimates.

4-D variational data assimilation methods have been
widely used in meteorological and oceanographic applications
[8]–[10], although relatively few of these have accounted for
model error. The variational approach offers the possibility of
achieving the accuracy of advanced sequential estimation algo-
rithms such as the Kalman filter [11] with the computational
efficiency of suboptimal methods. This is possible because
variational methods do not explicitly evaluate the large error
covariance matrices which are propagated by Kalman filtering
algorithms. Moreover, variational methods are particularly
well suited for the highly nonlinear soil moisture problem.
Various computational enhancements developed in recent years
have greatly improved the practical potential of variational
data assimilation [12]. These include the indirect iterated
representer method [7], [12], [13], which we use in our soil
moisture estimation algorithm.

We begin in Sections II–IV with brief reviews of the assimila-
tion method and the land surface model used in our soil moisture
application. In Section V, we describe the setup of a synthetic
experiment used to demonstrate the performance of the algo-
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rithm. Section VI discusses the results of this experiment. In the
final section, we summarize the implications of the synthetic ex-
periment and assess the prospects for variational assimilation of
soil moisture on an operational basis.

II. V ARIATIONAL DATA ASSIMILATION

Model predictions and measurements both provide useful
information about the actual state of the soil. The objective of
our soil moisture data assimilation algorithm is to combine
these two sources of information. The relevant models for the
soil moisture application are based on mass and energy balance
equations that describe the temporal and spatial evolution
of soil moisture, soil temperature, and canopy temperature.
These variables may be approximated by a set of spatially
discretized time-dependent states defined at the cells of a
three-dimensional (3-D) computational grid.

If all of the spatially discretized states are assembled in a
time-dependent -dimensional vector the hydrologic
model can be expressed as

(1)

The -dimensional vector is composed of a set of model
errors that are treated as random forcing terms in the state equa-
tion. The initial condition is parameterized with a random vector

, which may have a dimension less than . These random
variables are defined in terms of their first- and second-order
moments. In particular, the specified prior mean valuesand

and prior covariances and summarize our informa-
tion about the errors prior to data assimilation. For convenience,
we assume that is zero. This assumption could be relaxed if
evidence suggested the presence of a systematic bias (nonzero
mean) in the model error. Note that temporal correlations in the
model errors can lead to a bias in the state even when the model
error itself is unbiased. Deterministic forcings such as observed
meteorological inputs are included in the nonlinear operator.

The radiobrightness measurements to be assimilated by the
algorithm can be related to the moisture and temperature states
with a nonlinear radiative transfer model. It is convenient to as-
semble all brightness temperature measurements available over
the temporal “assimilation interval” in an -dimen-
sional vector . The th element of is the scalar measure-
ment obtained at time over an area centered on location.
Next, let denote the true radiobrightness at location

and time , where is derived from a radiative transfer
model (Section IV-A). The complete measurement vector can
then be written as an integral over a set of Dirac delta functions
that sample the true radiobrightness values at all of the measure-
ment times and locations

(2)

Here, is a diagonal matrix of dimension by with
the th diagonal element equal to . Moreover,
and are -dimensional vectors with th components
and , respectively. The random vectorin (2) accounts for

additive measurement errors and is defined in terms of its first
and second moments. We assume thatis zero mean with a
specified covariance matrix of dimension by .

The data assimilation algorithm is designed to balance the
effects of uncertain model errors, initial condition parameters,
and measurement errors. This is achieved by identifying the
model errors and initial condition parameters which minimize
a weighted least-squares (minimum variance Bayesian) objec-
tive function

(3)

This objective function minimizes the aggregate error over
the assimilation interval. The first term accounts for the misfit
between the data vector and the measurement predictions

, normalized by the measurement error covariance.
The second and third terms penalize normalized deviations
of the uncertain inputs from specified prior mean values. The
final term is obtained by adjoining the state equation to the
performance index with the time-dependent -dimensional
Lagrange multiplier vector . This constraint ensures that the
state estimates produced by the assimilation procedure satisfy
the hydrologic model within the range specified by the model
error statistics.

Estimates of the parameter vectorand the model error
are obtained by setting the first variation of the objective func-
tion (3) equal to zero. This yields a set of so-called Euler-La-
grange equations, which constitute a two-point boundary value
problem [7]

(4)

(5)

(6)

where and are by and by
matrices, respectively. Here and in the following, the estimates
are denoted with a hat.

The first, or forward, Euler–Lagrange (4) ensures that the es-
timates obey the state (1). The second, or adjoint (5), describes
the temporal evolution of the adjoint variable (or Lagrange mul-
tiplier) . This variable is closely related to the model error and
parameter estimates, which are obtained from (6). Note that the
adjoint (5) is forced by differences between measurements and
the corresponding model predictions. This equation is integrated
backward in time, starting from a homogeneous terminal condi-
tion. The model error estimate is the convolution of the adjoint
variable over the model error covariance, while the initial
condition parameter estimate is a weighted sum of the adjoint
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values at the initial time, with weights derived from the covari-
ance matrix . Once the unknown model errors and parameters
are estimated, the forward equation may be used to derive the
state estimate at any time or location. Note that the adjoint
variable contains all of the measurement information needed
to derive the updated estimates, , and . These estimates can
be obtained without explicit computation of the state estimation
error covariance matrix.

III. T HE REPRESENTERALGORITHM

The coupled set of nonlinear Euler–Lagrange equations de-
scribed in the previous section must be solved with an iterative
numerical algorithm. Although several possibilities are avail-
able for solving such two-point boundary value problems, we
have found that the best combination of efficiency and perfor-
mance is provided by the indirect iterated representer algorithm
[12]. This algorithm is particularly efficient because it propa-
gates covariance information implicitly (through the Euler–La-
grange equations) rather than explicitly (with a large covari-
ance matrix). As a result, the method is able to provide statis-
tically optimal estimates without the simplifications that have
been used in other large-scale soil moisture estimation applica-
tions. Fig. 1 summarizes the algorithm.

In the iterated representer algorithm, the estimates are derived
by solving a sequence of linear estimation problems until con-
vergence is achieved. Although there is no proof or guarantee
that this sequence converges, experience has shown that it con-
verges in practice for models that are reasonably close to linear.
At iteration level , we linearize the model and measure-
ment equations around the nominal trajectory and around

, which are the estimates from the previous iteration

(7)

(8)

The linear functional can be viewed as the derivative (or
slope) of the measurement operator . The Euler–Lagrange
equations for the linearized problem are

(9)

(10)

(11)

Fig. 1. Flowchart for the indirect iterated representer method.

where in (9) we defined

(12)

Aside from the factor , the coefficient vector is equal to the
posterior data misfit. Note that the linearized Euler–Lagrange
equations are coupled through the vector(that is, depends
on , which depends on). This makes the problem difficult
to solve. The idea of the representer algorithm is to findinde-
pendently and thus break the coupling of the Euler–Lagrange
equations. Then (9) through (11) could be solved in sequence,
starting with the adjoint equation and progressing through the
update equations and the linearized state equation giving (in
order) , , , and .

The decoupling of the linear Euler–Lagrange equations relies
on a series expansion of the estimated fields

(13)

(14)

The leading term of the state representer expansion (13) is the
background field , which is obtained from (7) using

and . Note that the background field is
an approximation of the prior field , which is derived from
(1) with and . The coefficients , as
defined in (12), are called the representer coefficients. The same
coefficients are used in (13) and (14).



REICHLE et al.: VARIATIONAL DATA ASSIMILATION OF MICROWAVE RADIOBRIGHTNESS OBSERVATIONS 1711

The basis functions of the expansion, called state rep-
resenter functions, are the linearized prior cross-covariances be-
tween the (scalar) measurement predictions and the state

[7]. The functions of (14) are called the adjoint rep-
resenters. In each case, the superscriptstands for the number
of the measurement corresponding to the representer function
in question. Each and each is an -dimensional vector
defined over . The representer functions are derived from
the Euler–Lagrange equations rather than specifieda priori. In-
serting (13) and (14) into (9), (10), and (11), we obtain

(15)

(16)

Whereas the adjoint (9) is forced with a linear combination
of the posterior data misfit (or ), the adjoint representer
(15) is forced with a single impulse, which corresponds to
one measurement time and location and is independent of
the current estimate . We can therefore solve for the
representer fields without knowing the current estimate, which
is consistent with the interpretation of the representers as
prior covariances. Strictly speaking, however, the linearization
around the previous estimate implies that the representer
fields depend on the data after the first iteration. Note also that
the representer fields and coefficients change at each iteration.

The representer expansions enable us to derive a representer
coefficient expression which does not depend on . In-
serting (13) and (14) in (12), we find

(17)

The representer matrix with is
the (prior) covariance matrix of the measurement predictions

. Since (17) is in terms of the prior data misfit, we could
now compute the estimates by explicitly calculating the rep-
resenter functions and the representer matrix and then
solving (17) for the representer coefficients. This approach is
called the direct iterated representer method. There is, however,
a faster way to get the estimates, which also avoids the com-
putation and storage of the representer matrix. This technique
is called the indirect iterated representer method. Rather than
computing all individual representer fields , we calcu-
late only the linear combinations of representer functions that
are needed in a conjugate gradient solver of (17). For details,
see [7], [12]. The computational savings are discussed in Sec-
tion VI-E.

A. Posterior Covariances

After the iteration has converged, we can opt for calculating
the posterior covariances of the estimates. For large problems,
however, we can at best compute the posterior covariance of the

measured variables. The computational effort for the state error
covariances is simply too large. Moreover, the problem at hand
is nonlinear and posterior covariances based on the lineariza-
tions (7) and (8) can only approximate the true covariances.

Since is the true measurement error (2), we
define as the (posterior) estima-
tion error of the measurement predictions and
as the estimate of the measurement error, or equivalently, the
vector of posterior data residuals. The corresponding posterior
covariances are [7], [9]

(18)

Recall that the representer matrixis the prior covariance of the
measurement predictions. We can useto normalize the pos-
terior data residuals and to test whether their distribution is stan-
dard normal and uncorrelated in space and time (Section VI-B).
This test is particularly powerful when actual data are assimi-
lated, because it provides a way to check whether the estimator
is operating in accordance with its statistical assumptions. It
must be stressed, however, that this test relies on the lineariza-
tions that we have adopted.

IV. L AND SURFACEMODEL FORDATA ASSIMILATION

The models that form the basis for soil moisture data assim-
ilation must capture key physical processes while remaining
efficient enough to make large-scale estimation computation-
ally feasible. These are potentially conflicting requirements that
must be traded off when a model is selected. For the variational
approach, we also require a numerically well behaved adjoint
model. The development of such an adjoint is a time-consuming
task and there are currently no adjoint models available for the
commonly used land surface schemes. We have developed a hy-
drologic model which meets the requirements of variational data
assimilation. The model is described in [14] and in detail in [7].
Its most important features are summarized in this section.

A. Vertical Moisture and Energy Transport

Our model of coupled moisture and heat transport is a
soil–vegetation–atmosphere transfer scheme (SVAT) that relies
on many of the concepts used in other hydrologic modeling
applications. Vertical soil moisture transport in each pixel is
governed by Richards’ equation, with soil hydraulic properties
described by relationships from [15]. We use five subsurface
layers in the Richards’ equation discretization, located at 0–5
cm, 5–15 cm, 15–30 cm, 30–55 cm, and 55–90 cm. The lower
boundary condition for the soil moisture equation is defined by
gravity drainage (zero pressure gradient).

In order to achieve maximum computational efficiency, ver-
tical energy transport in each pixel is described with a one-layer
force-restore method [16] rather than the full heat equation. This
approach is ideal for our remote sensing application since it fo-
cuses on diurnal soil temperature fluctuations in the upper layer,
which effects microwave radiation. The deep soil temperature
is specified as the seasonal average of the observed air tem-
perature. Vertical moisture and heat fluxes through the vegeta-
tion layer are modeled with a resistance network approach [17].
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At the land surface, we assume near-neutral atmospheric condi-
tions. Finally, the brightness temperature is related to the land
surface states with a grey body radiative transfer model [18].

B. Horizontal Variability

In order to be operationally useful, our data assimilation tech-
nique must consider horizontal as well as vertical variability.
Fortunately, fluxes and length scales in the vertical and hori-
zontal dimensions are much different. This scale disparity can
be exploited to improve computational efficiency without any
significant sacrifice in accuracy. In particular, we assume that
horizontal moisture and heat fluxes in the unsaturated zone are
negligible. As a result, horizontal variations in our soil mois-
ture estimates reflect spatial correlation in meteorological in-
puts, land cover, and soil texture rather than lateral transport.
This assumption is reasonable for terrain with moderate relief
over the spatial scales under consideration here (Fig. 2). It en-
ables us to break the model domain into a grid of one-dimen-
sional (1-D) vertical cells or pixels. Our 4-D assimilation algo-
rithm accounts for horizontal correlations in the forcing errors
as well as for unmodeled horizontal fluxes through the model
error terms. The assimilation algorithm derives estimates of the
soil moisture in the five layers associated with each pixel and
estimates of the surface soil temperature and canopy tempera-
ture of each pixel.

Satellite observations of L-band brightness temperatures will
likely be available only over spatial scales much larger than the
scales of the meteorological data and other inputs. This requires
us to downscale from coarse measurements to higher resolu-
tion estimates. Downscaling can be carried out in a straightfor-
ward manner within the framework of our algorithm [14]. In this
paper, we limit ourselves to estimating land surface states at the
scale of the brightness observations.

V. A SYNTHETIC EXPERIMENT

In the following sections, we investigate the performance of
our assimilation algorithm using an experiment based on syn-
thetically generated radiobrightness data. Synthetic experiments
are ideally suited for algorithm performance tests since all of the
uncertain inputs are known by design. In particular, synthetic
experiments allow us to isolate the effects of the nonlinearities
in the hydrological model on the quality of the estimates. Such
experiments are an indispensable first step toward a field appli-
cation, although they clearly cannot replace tests based on ac-
tual observations. Recognizing these limitations, it is useful to
examine the results from well-controlled synthetic experiments.

The synthetic test problem considered in this paper is based
on the Southern Great Plains (SGP97) hydrology experiment in
Central Oklahoma [19]. The 80 km 160 km area chosen for
the synthetic experiment is shown in Fig. 2. We divide this area
into 16 by 32 pixels of 5 km 5 km. Soil temperature and soil
moisture are estimated in each of these 512 pixels. Fig. 2 also
displays land cover data (from the SGP97 Data Archive) and
soil texture data (from the Earth System Science Center, Penn-
sylvania State University, State College). The meteorological in-
puts are taken from the Oklahoma Mesonet database and inter-
polated to the model grid with inverse-square distance weigths.

Fig. 2. Area for the synthetic experiment. The horizontal grid of 16� 32 pixels
(80 km� 160 km) is shown together with (left) the locations of the Oklahoma
Mesonet stations and the land cover classes and (right) with the soil texture
classes (from [14]).

Our experiment extends for eight days from June 27, 1997 to
July 4, 1997, which are covered by a single assimilation interval.
Soil moisture estimates are derived at a time step of 30 min.

The radiobrightness measurements obtained for our experi-
ment are based on synthetically generated “true” initial con-
dition parameters and time-dependent model error fields.
These are used in the forward model (1), which is solved to give
a set of “true” system states. Recall that the “prior” state is the
solution to (1) when the initial conditions and model errors are
set to their prior values. This prior state can be viewed as the
“best guess” of the true states available without the benefit of
radiobrightness measurements. Fig. 3 shows the true and prior
top node saturation for our experiment at four times during the
assimilation interval. We define soil saturation to vary between
zero and one.

The “true” brightness temperatures are obtained by using
the “true” states as inputs to the radiative transfer model. The
vector of synthetic brightness measurements is obtained by
adding random measurement errors to the output of this model.
Synthetic brightness measurements are generated once daily
at every pixel in the model domain at 10:00 AM local time,
which is typical of the SGP97 field experiment. This yields
seven images and a total of scalar
measurements. The assimilation algorithm estimates the land
surface states from the noisy dataand the prior solution.

The spatial and temporal correlation functions of the uncer-
tain inputs that are needed for the generation of the synthetic
true fields and for the estimation algorithm depend on the given
model and field setting. These statistics are very difficult to de-
termine, and their characterization is beyond the scope of this
paper. Here, we only aim to prove the concept of soil moisture
assimilation with synthetic experiments. This does not critically
depend on the exact shapes and scales of the correlation func-
tions, and we specify conditions that in our experience are ap-
propriate for the experiment area and our model.
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Fig. 3. First row shows the true top node saturation on four days at 10:00 AM. The second and third rows show the prior and the estimated top node saturation
at the same times, respectively.

The initial conditions and model errors generated in our
synthetic experiment are zero-mean normally distributed
random fields with exponential spatial and temporal correlation
functions. The only uncertain initial condition parameter in each
pixel is the total initial water storage across the modeled profile.
The initial saturation profile is related to this parameter through
a shape function which can be specified arbitrarily. Here we use
a hydrostatic shape. In an operational setting, the shape could be
derived from the estimated profile at the final time of a preceding
assimilation interval. The standard deviation of the initial top
node saturation is 0.12 and the correlation length is 50 km. The
initial upper layer soil temperature is set equal to the initial air
temperature and is assumed to be known perfectly (its memory
is only a few hours and has little impact on the estimates).

Model errors are represented as unknown fluxes in the near-
surface soil moisture, soil energy, and canopy energy balance

equations. Each of these errors is zero mean and has a standard
deviation equivalent to 50 W m . The model error correlation
lengths are all 6 km, and their correlation times are all 10 h. The
random measurement errors added to the brightness temperature
values are spatially and temporally uncorrelated with a standard
deviation of 5 K. The absence of spatial correlation of the mea-
surement error is not a constraint imposed by the algorithm but
is a simplification adopted for convenience.

VI. RESULTS AND DISCUSSION

A. Soil Moisture Estimates

We begin the discussion of our synthetic data assimilation ex-
periment with a review of the soil moisture saturation estimates
produced by the algorithm. Fig. 3 shows the true, the prior,
and the estimated top node saturation at four times during the
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one-week assimilation interval. The temporal evolution of the
top node saturation is governed by the initial condition (which
tends to persist during drydown periods), precipitation, soil tex-
ture, and land cover. The value of the observations for retrieving
the true soil moisture is obvious. In the absence of brightness
data, our best guess for the top node saturation is the prior solu-
tion shown in the middle row of Fig. 3, which is quite far from
the true saturation. Once we assimilate the brightness data, we
are able to accurately estimate the initial condition and the evo-
lution of the top node soil moisture.

The profile estimates obtained from this particular synthetic
experiment are as good as the surface estimates (not shown). In
practice, the feasibility of retrieving subsurface moisture pro-
files from surface measurements depends on the accuracy and
the physical realism of the land surface model and the associated
error statistics. Since the subsurface states cannot be remotely
sensed at the pixel scale they can only be estimated by using
the hydrologic model to propagate information downward from
the surface. The time required for such propagation is signifi-
cantly longer than the length of a single assimilation interval.
This implies that we need to conduct a multi-interval test over
several months before we can fully demonstrate the feasibility
of estimating subsurface profiles from surface measurements.
Such a test requires a procedure for reinitializing multiple in-
tervals. Reinitialization is beyond the scope of this paper but is
discussed in [14].

B. Posterior Covariances and Data Residuals

In our synthetic experiment, we can assess the accuracy of the
estimates produced by the data assimilation algorithm simply by
comparing the estimates to the synthetic true values, as we have
done in Fig. 3. In practice, we do not know the true states and we
must assess performance in other ways. One of the best options
for the soil moisture application is to examine the differences
between measured and estimated radiobrightness values. These
are the posterior data residuals discussed in
Section III-A. For the performance analysis, it is convenient to
construct a set of normalized posterior data residuals . If
the estimation problem were linear, these normalized posterior
residuals would have a unit normal distribution (since
all input errors are normally distributed), and they would be spa-
tially and temporally uncorrelated. If the normalized residuals
satisfy these properties at least approximately for our nonlinear
problem, when all covariances are based on linearizations about
the final estimate, we can assume with reasonable confidence
that the estimation process is near-optimal.

Before we can normalize the posterior residuals, we must
compute the theoretical prior and posterior covariances of the
brightness temperature at the measurement times and locations
(Section III-A). Fig. 4 shows the theoretical area-average esti-
mation error standard deviation for each of the seven synthetic
brightness images before and after assimilation, derived from
and , respectively (we define the area-average standard devi-
ation as the square root of the area-average variance). The spa-
tial and temporal average of the prior error standard deviation is
about 16 K, with variations from a few K up to 40 K within
an image. When we assimilate the brightness images, which
have a constant measurement error standard deviation of 5 K,

Fig. 4. Upper panel shows the area-average error standard deviation of the
brightness temperature�(T ). Each group of bars refers to one observation
time, which is indicated with vertical dotted lines in the lower panel. The first
bar of each group (light gray) shows�(T ) of the prior solution, the second bar
(dark gray) shows�(T ) of the observations, and the third bar (black) shows
�(T ) of the estimates. The lower panel shows a time series of the area-average
precipitation.

TABLE I
STATISTICS OF THENORMALIZED POSTERIORDATA RESIDUALS

we achieve an estimation error standard deviation of about 2.5
K, which is relatively homogeneous across the domain.

In Fig. 4, we can also see the influence of precipitation events
on the uncertainty in the brightness estimates (and hence in soil
moisture). The prior and posterior error standard deviations de-
crease after the rain event and then slowly increase again as the
soil dries out. Generally, we find that the estimation error stan-
dard deviation decreases with increasing soil moisture. In other
words, precipitation events tend to wipe out the memory of the
system, including the effect of model errors.

We can now turn to the discussion of the posterior data resid-
uals . Although their covariance is not strictly diagonal,
it is very diagonally dominant. For reasons of numerical accu-
racy (the computed is not perfectly symmetric), we neglect
off-diagonal elements of and simply normalize the poste-
rior residuals with their theoretical standard deviation. Table I
shows sample mean values and variances of the normalized pos-
terior data residuals for each radiobrightness image, together
with 95% confidence intervals. We find that the sample means
for six of the seven residual images are compatible with the zero
mean hypothesis at a 5% significance level. For the sixth image
and the sample of all residuals, the 95% confidence interval does
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TABLE II
OBJECTIVE FUNCTION AND NUMBER OF MODEL INTEGRATIONS

not include zero and we have a slight overall negative bias. A
Kolmogorov-Smirnov [20] test indicates that the hypothesis of
a standard normal distribution cannot be rejected at a 5% sig-
nificance level for six of the seven images (Table I). The nor-
mality hypothesis is rejected for the fifth image as well as for
the sample of all residuals. Finally, the sample variance of all
normalized posterior residuals is statistically indistinguishable
from one.

If we plot the normalized posterior residuals (not shown), we
find that they exhibit very little structure in either time or space,
confirming the theoretical prediction that they should be nearly
uncorrelated. A quantitative investigation of the two-point au-
tocorrelation function corroborates this result. In summary, the
normalized posterior data residuals do not fulfill all the criteria
associated with an optimal linear estimator but they share many
of the same qualitative features. Given the nonlinearities in-
volved in the assimilation, there is no reason to expect the poste-
rior residuals to be either strictly normal or uncorrelated. How-
ever, the general symmetry of the probability distribution and
the weak correlation of the posterior residuals suggest that the
estimator is acting nearly optimally.

C. Reduced Objective Function

The value of the objective function (3) provides another
useful indicator of estimator performance. If the assumed
statistical properties of the measurement, model, and parameter
errors are correct this objective should be approximately

-distributed with a mean of and a standard deviation
of [9]. For our test problem the theoretical values
are and . Table II shows the prior and
reduced values of the objective as a function of the iteration. In
the first iteration, the objective function decreases significantly
from its prior value of 25 098 to 3424. But the objective
function value does not continue to decrease monotonically, as
it would in a steepest descent search. This is because in later
iterations changes in the objective reflect adjustments needed
to satisfy the nonlinear state equation, which is imposed as a
constraint but may be violated in the earlier iterations. These
adjustments sometimes actually increase the objective function
value. The converged objective function value of
compares well with the expected value of , lying just
over one standard deviation away. Since the objective function
can be evaluated at negligible cost in the representer algorithm
[9], this is an important validation step when actual data are
assimilated.

D. Model Error and Adjoint Variables

The adjoint variable plays a key role in our variational as-
similation algorithm since it relates the model error and initial
condition parameter estimates to the measurements. This is ap-

parent from (6), which indicates that the model error estimate
is the convolution of the adjoint with the model error covari-
ance, and the parameter estimate is a weighted sum of the ele-
ments of the adjoint vector at the initial time. If the model errors
were uncorrelated in time and space, the model error estimate
for each component of the state equation would be equal to the
corresponding adjoint variable. In our soil moisture application,
however, temporal and spatial correlations are important since
they account for persistence of uncertain inputs such as errors
in precipitation and soil parameters.

An examination of the adjoint values obtained from our syn-
thetic experiment provides some insight into the relationship be-
tween the adjoint variables and the model error. Fig. 5 compares
time series of the soil moisture and soil temperature adjoint vari-
ables in a representative pixel with brightness temperature mea-
surements and estimates in the same pixel. The soil moisture
adjoint variables are provided at several different depths. The
abrupt changes in the surface values of the adjoint variables ob-
served as time progresses backward reflect the forcing of the
backward (adjoint) (5) with impulses at the observation times.
The weights of these impulses are proportional to the misfits be-
tween the observed and the estimated brightness temperatures
and to the sensitivity derivative of the brightness temperature
with respect to the state vector. The magnitude of the adjoint in-
creases rapidly (moving backward in time) when the effects of
a new measurement are felt and then gradually decays as these
effects are dampened by the model dynamics.

The brightness temperature depends directly on the satura-
tion in the top two nodes (at 0 cm and 5 cm) via the top layer
microwave emissivity and the heat capacity. Consequently, the
brightness temperature data misfit has an instantaneous effect
on the surface soil moisture adjoint variable. Since saturation
values in the lower layers do not directly influence the bright-
ness temperature, the soil moisture, adjoint variables for these
layers change more gradually, reflecting the delayed propaga-
tion of information downward from the surface. The soil mois-
ture at all depths has a longer memory than the soil temperature,
which decays (backward) to zero within 12 h after a measure-
ment.

Fig. 6 plots estimated, prior, and true model error time series
for the same pixel considered in Fig. 5. Note that the prior (or
mean) model error is zero by convention. The upper panel shows
the model error for the moisture flux upper boundary condition
(the forcing term of the soil moisture balance equation). While
the true model error correlation time is 10 h, we only assimilate
brightness updates once per day so the model error estimate is
necessarily much smoother than the true time series. Neverthe-
less, the estimate tends to track the general trend of the actual
model error.

The second panel of Fig. 6 shows model errors in the soil tem-
perature equation (forcing term for the soil energy balance). The
estimate of the soil temperature model error is somewhat poorer
than the estimate of the soil moisture model error. This obser-
vation applies generally, across the model domain. The third
panel shows the model error in the canopy temperature equa-
tion (forcing term for the canopy energy balance). Apparently,
we have no skill in estimating this error. The poor estimates ob-
tained for the soil and canopy temperatures reflect the fact that
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Fig. 5. Top panel shows the estimated brightness temperature for a
representative pixel along with the (synthetic) observations. For reference, the
prior and the true brightness are also shown. The second and third panels show
the adjoint soil moisture for the upper and lower three nodes, respectively. The
bottom panel shows the adjoint soil temperature.

daily L-band brightness images contain little or no information
on soil and canopy temperature at the 30 min scale. We are able
to estimate the soil moisture model error because soil moisture
has a longer memory than the soil or canopy temperatures. This
is evident from the adjoint variable plots of Fig. 5.

E. Computational Effort

The computational burden for advanced data assimilation in
operational land surface applications is formidable. This reflects
the large horizontal extent of the model domain, the need for
high resolution in time, the large number of remote sensing mea-
surements to be assimilated, and the nonlinear nature of the state
and measurement equations. It is useful to review some of the
factors which affect the computational time. Such a review pro-
vides some insight about the limitations of current data assimi-
lation methodology and suggests where improvements are most
needed.

In the representer method, the bulk of the computational ef-
fort is spent on model integrations. If we count the forward and
backward integrations separately and equally, the integration
count for the direct iterated representer method is

model integrations per iteration [9]. For the indirect iter-
ated representer method, the integration count depends on the
number of linear combinations of representer fields needed in

Fig. 6. Model error (top) in the moisture flux upper boundary condition,
(middle) in the soil energey balance, and (bottom) in the canopy energy balance
for a representative pixel (the same as Fig. 5).

the conjugate gradient solver of (17). Table II shows the number
of model integrations for each iteration of our synthetic test
problem. For our example, the computational burden of the in-
direct iterated representer method is one order of magnitude
less than that of the direct method. This efficiency has an in-
tuitive physical interpretation. Obviously, the horizontal corre-
lations present in the initial condition and model errors imply
that there are many fewer degrees of freedom in the brightness
images than there are scalar data. Through its design, the indi-
rect method effectively compresses the data.

For operational applications, it is important to understand
how computational requirements scale as we increase the size of
the problem. Since the model is composed of a collection of in-
dependent vertical columns, the computational requirements for
each model integration scale with the number of pixels(for
a constant number of layers in the vertical). We have found that
the number of model integrations required in the indirect iter-
ated representer method is mostly determined by the number of
scalar data being assimilated [7]. Therefore, the computational
effort scales roughly with the product of the number of measure-
ments and the number of pixels .

The memory requirements for the assimilation algorithm are
substantial and scale with the length of the assimilation interval
and the size of the grid. Ideally, all variables should be kept in
memory during the assimilation to keep the cost of input/output
operations low. In addition to the model inputs we have to store
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the state trajectory over the entire interval , and we need
to store the estimates of the model error over .

Finally, we briefly compare the computational requirements
of the indirect iterated representer technique, the gradient-de-
scent (“adjoint”) method [9], the extended Kalman filter (EKF)
[11], the ensemble Kalman filter (EnKF) [21], and error sub-
space statistical estimation (ESSE) [22]. Of these techniques,
the representer method, the gradient-descent approach, and the
EKF fully account for the temporal propagation of uncertainty.
The EnKF and ESSE approximate the dynamic evolution of the
error covariances. Our comparison is based on an approximate
count of floating point operations rather than actual computa-
tional experience (see [7], [22] for details).

The EKF explicitly propagates the state error covariance ma-
trices and cannot be used for 4-D large-scale soil mois-
ture assimilation unless all horizontal correlations are neglected.
Likewise, the adjoint-based gradient-descent method is not fea-
sible if model errors are included because the number of de-
grees of freedom increases in direct proportion to the number
of time steps. From a computational point of view, the indirect
representer technique is competitive with approximate sequen-
tial methods like the EnKF and ESSE, which scale with ,
where is the number of ensemble members. It is not yet well
understood how many ensemble members are required, but we
expect to scale with , the size of the domain. In this case,
the indirect representer and Monte Carlo methods appear to be
competitive, both requiring on the order of model integra-
tions for large problems. For comparable effort, the great advan-
tage of the representer technique lies with the near-optimality of
the estimates, while the sequential Monte Carlo methods may
be a better choice if posterior state covariance information is re-
quired.

VII. SUMMARY AND CONCLUSIONS

In this article, we have described a variational method which
accounts for process dynamics and model errors and is suitable
for large-scale soil moisture assimilation. We have applied the
indirect iterated representer algorithm to a synthetic test experi-
ment and demonstrated its near-optimal performance. This was
done by closely examining the statistical properties of the pos-
terior data residuals and by looking at the value of the objec-
tive function. Although nonlinearities in the model and in the
measurement process complicate the performance assessment,
our results support the conclusion that large-scale soil moisture
data assimilation is feasible. Since similar validation techniques
can also be applied in field tests, it should be possible to verify
whether the approach works as well in practice as it does in our
synthetic example.

We are confident that soil moisture can be satisfactorily esti-
mated from daily L-band brightness temperature observations.
However, it appears that soil and canopy temperatures cannot be
adequately retrieved from daily observations alone. An exami-
nation of the adjoint variables reveals the shorter memory of
the soil and canopy temperatures as compared to soil moisture.
Other types of measurements, such as infrared remote sensing
observations, are available more frequently and could be assim-
ilated to improve the temperature estimates. An additional in-

sight provided by the adjoint variables is the time lag inherent
in propagating information from the surface down the soil pro-
file.

Theoretical error covariances indicate that uncertainty in
brightness temperature estimates (and therefore in soil moisture
estimates) decreases with increasing soil moisture. At one
extreme, we know that surface soil moisture is guaranteed to
be close to saturation after a significant rainstorm. As precip-
itation inputs decrease and the effects of drydown dominate,
uncertainty gradually increases. If drydown persists for a long
time, soil moisture approaches residual saturation and the
uncertainty decreases again.

Much more work is necessary before soil moisture data
assimilation becomes practical in an operational setting. Ob-
vious future research directions are a test of the algorithm with
field data (for example, ESTAR radiobrightness observations
collected during SGP97 [19]), and the assimilation of additional
types of measurements. Moreover, operational applications
require a scheme for reinitializing subsequent assimilation
intervals. Since the necessary posterior state covariances are
too expensive to compute in practice, this must be done in an
approximate fashion. Preliminary results are encouraging [14].

In spite of the substantial gains in computational efficiency
provided by the indirect iterated representer method, the com-
putational effort is tremendous. Of particular concern is the fact
that the computational load scales with the number of observa-
tions that are assimilated. We believe that operational applica-
tions must rely on parallel computing, which is quite compatible
with the multicolumn structure of the hydrologic model used in
our soil moisture application. Even if the computational limita-
tions turn out to be prohibitive for operational applications in the
near future, the proposed algorithm provides a valuable bench-
mark against which computationally more efficient algorithms
that do not account for error covariance propagation can be eval-
uated.
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